Information on Result #869307
Linear OOA(3234, 530, F32, 2, 14) (dual of [(530, 2), 1026, 15]-NRT-code), using OOA 2-folding based on linear OA(3234, 1060, F32, 14) (dual of [1060, 1026, 15]-code), using
- (u, u+v)-construction [i] based on
- linear OA(327, 33, F32, 7) (dual of [33, 26, 8]-code or 33-arc in PG(6,32)), using
- extended Reed–Solomon code RSe(26,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,3], and minimum distance d ≥ |{−3,−2,…,3}|+1 = 8 (BCH-bound) [i]
- linear OA(3227, 1027, F32, 14) (dual of [1027, 1000, 15]-code), using
- construction XX applied to C1 = C([1022,11]), C2 = C([0,12]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C([1022,12]) [i] based on
- linear OA(3225, 1023, F32, 13) (dual of [1023, 998, 14]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,11}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(3225, 1023, F32, 13) (dual of [1023, 998, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(3227, 1023, F32, 14) (dual of [1023, 996, 15]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(3223, 1023, F32, 12) (dual of [1023, 1000, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,11]), C2 = C([0,12]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C([1022,12]) [i] based on
- linear OA(327, 33, F32, 7) (dual of [33, 26, 8]-code or 33-arc in PG(6,32)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.