Information on Result #880022
Linear OOA(25620, 387, F256, 2, 12) (dual of [(387, 2), 754, 13]-NRT-code), using OOA 2-folding based on linear OA(25620, 774, F256, 12) (dual of [774, 754, 13]-code), using
- discarding factors / shortening the dual code based on linear OA(25620, 775, F256, 12) (dual of [775, 755, 13]-code), using
- construction XX applied to C1 = C([124,134]), C2 = C([123,133]), C3 = C1 + C2 = C([124,133]), and C∩ = C1 ∩ C2 = C([123,134]) [i] based on
- linear OA(25618, 771, F256, 11) (dual of [771, 753, 12]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {124,125,…,134}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(25618, 771, F256, 11) (dual of [771, 753, 12]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {123,124,…,133}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(25620, 771, F256, 12) (dual of [771, 751, 13]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {123,124,…,134}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(25616, 771, F256, 10) (dual of [771, 755, 11]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {124,125,…,133}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([124,134]), C2 = C([123,133]), C3 = C1 + C2 = C([124,133]), and C∩ = C1 ∩ C2 = C([123,134]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.