Information on Result #899493

Linear OOA(2567, 4194615, F25, 2, 12) (dual of [(4194615, 2), 8389163, 13]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(2511, 314, F25, 2, 6) (dual of [(314, 2), 617, 7]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(2511, 628, F25, 6) (dual of [628, 617, 7]-code), using
      • construction XX applied to C1 = C([623,3]), C2 = C([0,4]), C3 = C1 + C2 = C([0,3]), and C∩ = C1 ∩ C2 = C([623,4]) [i] based on
        1. linear OA(259, 624, F25, 5) (dual of [624, 615, 6]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,1,2,3}, and designed minimum distance d ≥ |I|+1 = 6 [i]
        2. linear OA(259, 624, F25, 5) (dual of [624, 615, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
        3. linear OA(2511, 624, F25, 6) (dual of [624, 613, 7]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,4}, and designed minimum distance d ≥ |I|+1 = 7 [i]
        4. linear OA(257, 624, F25, 4) (dual of [624, 617, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
        5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
        6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
  2. linear OOA(2556, 4194301, F25, 2, 12) (dual of [(4194301, 2), 8388546, 13]-NRT-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2567, 1398204, F25, 14, 12) (dual of [(1398204, 14), 19574789, 13]-NRT-code) [i]OOA Folding and Stacking with Additional Row