Information on Result #901854

Linear OOA(3253, 4210733, F32, 2, 9) (dual of [(4210733, 2), 8421413, 10]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(3212, 16432, F32, 2, 4) (dual of [(16432, 2), 32852, 5]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(3212, 32864, F32, 4) (dual of [32864, 32852, 5]-code), using
      • generalized (u, u+v)-construction [i] based on
        1. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code), using
        2. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        3. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        4. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        5. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        6. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        7. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        8. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        9. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        10. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        11. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        12. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        13. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        14. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        15. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        16. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        17. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        18. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        19. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        20. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        21. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        22. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        23. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        24. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        25. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        26. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        27. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        28. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
        29. linear OA(321, 1027, F32, 1) (dual of [1027, 1026, 2]-code), using
        30. linear OA(321, 1027, F32, 1) (dual of [1027, 1026, 2]-code) (see above)
        31. linear OA(323, 1027, F32, 2) (dual of [1027, 1024, 3]-code), using
        32. linear OA(327, 1027, F32, 4) (dual of [1027, 1020, 5]-code), using
          • construction XX applied to C1 = C([1022,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([1022,2]) [i] based on
            1. linear OA(325, 1023, F32, 3) (dual of [1023, 1018, 4]-code or 1023-cap in PG(4,32)), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,1}, and designed minimum distance d ≥ |I|+1 = 4 [i]
            2. linear OA(325, 1023, F32, 3) (dual of [1023, 1018, 4]-code or 1023-cap in PG(4,32)), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
            3. linear OA(327, 1023, F32, 4) (dual of [1023, 1016, 5]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 5 [i]
            4. linear OA(323, 1023, F32, 2) (dual of [1023, 1020, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
            5. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
            6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
  2. linear OOA(3241, 4194301, F32, 2, 9) (dual of [(4194301, 2), 8388561, 10]-NRT-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3253, 2105366, F32, 10, 9) (dual of [(2105366, 10), 21053607, 10]-NRT-code) [i]OOA Folding and Stacking with Additional Row