Information on Result #928761
Linear OOA(1646, 64, F16, 2, 40) (dual of [(64, 2), 82, 41]-NRT-code), using algebraic-geometric NRT-code AG(2;F,87P) based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4220, 192, F4, 2, 81) (dual of [(192, 2), 164, 82]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
2 | Linear OOA(4218, 189, F4, 2, 81) (dual of [(189, 2), 160, 82]-NRT-code) | [i] | ||
3 | Linear OOA(4216, 186, F4, 2, 81) (dual of [(186, 2), 156, 82]-NRT-code) | [i] | ||
4 | Linear OOA(4214, 183, F4, 2, 81) (dual of [(183, 2), 152, 82]-NRT-code) | [i] | ||
5 | Linear OOA(4212, 180, F4, 2, 81) (dual of [(180, 2), 148, 82]-NRT-code) | [i] | ||
6 | Linear OOA(4210, 177, F4, 2, 81) (dual of [(177, 2), 144, 82]-NRT-code) | [i] | ||
7 | Linear OOA(4208, 174, F4, 2, 81) (dual of [(174, 2), 140, 82]-NRT-code) | [i] | ||
8 | Linear OOA(4206, 171, F4, 2, 81) (dual of [(171, 2), 136, 82]-NRT-code) | [i] | ||
9 | Linear OOA(4204, 168, F4, 2, 81) (dual of [(168, 2), 132, 82]-NRT-code) | [i] | ||
10 | Linear OOA(4202, 165, F4, 2, 81) (dual of [(165, 2), 128, 82]-NRT-code) | [i] | ||
11 | Linear OOA(4200, 162, F4, 2, 81) (dual of [(162, 2), 124, 82]-NRT-code) | [i] | ||
12 | Linear OOA(4198, 159, F4, 2, 81) (dual of [(159, 2), 120, 82]-NRT-code) | [i] | ||
13 | Linear OOA(4196, 156, F4, 2, 81) (dual of [(156, 2), 116, 82]-NRT-code) | [i] | ||
14 | Linear OOA(4194, 153, F4, 2, 81) (dual of [(153, 2), 112, 82]-NRT-code) | [i] | ||
15 | Linear OOA(4192, 150, F4, 2, 81) (dual of [(150, 2), 108, 82]-NRT-code) | [i] | ||
16 | Linear OOA(1653, 67, F16, 2, 44) (dual of [(67, 2), 81, 45]-NRT-code) | [i] | ✔ | Construction X with Algebraic-Geometric NRT-Codes |
17 | Linear OOA(1649, 67, F16, 2, 40) (dual of [(67, 2), 85, 41]-NRT-code) | [i] | ✔ | |
18 | Linear OOA(1655, 68, F16, 2, 45) (dual of [(68, 2), 81, 46]-NRT-code) | [i] | ✔ | |
19 | Linear OOA(1650, 68, F16, 2, 40) (dual of [(68, 2), 86, 41]-NRT-code) | [i] | ✔ | |
20 | Linear OOA(1657, 69, F16, 2, 46) (dual of [(69, 2), 81, 47]-NRT-code) | [i] | ✔ | |
21 | Linear OOA(1651, 69, F16, 2, 40) (dual of [(69, 2), 87, 41]-NRT-code) | [i] | ✔ | |
22 | Linear OOA(1659, 70, F16, 2, 47) (dual of [(70, 2), 81, 48]-NRT-code) | [i] | ✔ | |
23 | Linear OOA(1652, 70, F16, 2, 40) (dual of [(70, 2), 88, 41]-NRT-code) | [i] | ✔ | |
24 | Linear OOA(1661, 71, F16, 2, 48) (dual of [(71, 2), 81, 49]-NRT-code) | [i] | ✔ | |
25 | Linear OOA(1653, 71, F16, 2, 40) (dual of [(71, 2), 89, 41]-NRT-code) | [i] | ✔ | |
26 | Linear OOA(1663, 72, F16, 2, 49) (dual of [(72, 2), 81, 50]-NRT-code) | [i] | ✔ | |
27 | Linear OOA(1654, 72, F16, 2, 40) (dual of [(72, 2), 90, 41]-NRT-code) | [i] | ✔ | |
28 | Linear OOA(1665, 73, F16, 2, 50) (dual of [(73, 2), 81, 51]-NRT-code) | [i] | ✔ | |
29 | Linear OOA(1655, 73, F16, 2, 40) (dual of [(73, 2), 91, 41]-NRT-code) | [i] | ✔ | |
30 | Linear OOA(1667, 74, F16, 2, 51) (dual of [(74, 2), 81, 52]-NRT-code) | [i] | ✔ | |
31 | Linear OOA(1656, 74, F16, 2, 40) (dual of [(74, 2), 92, 41]-NRT-code) | [i] | ✔ | |
32 | Linear OOA(1669, 75, F16, 2, 52) (dual of [(75, 2), 81, 53]-NRT-code) | [i] | ✔ | |
33 | Linear OOA(1657, 75, F16, 2, 40) (dual of [(75, 2), 93, 41]-NRT-code) | [i] | ✔ | |
34 | Linear OOA(1671, 76, F16, 2, 53) (dual of [(76, 2), 81, 54]-NRT-code) | [i] | ✔ | |
35 | Linear OOA(1658, 76, F16, 2, 40) (dual of [(76, 2), 94, 41]-NRT-code) | [i] | ✔ | |
36 | Linear OOA(1673, 77, F16, 2, 54) (dual of [(77, 2), 81, 55]-NRT-code) | [i] | ✔ | |
37 | Linear OOA(1659, 77, F16, 2, 40) (dual of [(77, 2), 95, 41]-NRT-code) | [i] | ✔ | |
38 | Linear OOA(1675, 78, F16, 2, 55) (dual of [(78, 2), 81, 56]-NRT-code) | [i] | ✔ | |
39 | Linear OOA(1660, 78, F16, 2, 40) (dual of [(78, 2), 96, 41]-NRT-code) | [i] | ✔ | |
40 | Linear OOA(1677, 79, F16, 2, 56) (dual of [(79, 2), 81, 57]-NRT-code) | [i] | ✔ | |
41 | Linear OOA(1661, 79, F16, 2, 40) (dual of [(79, 2), 97, 41]-NRT-code) | [i] | ✔ | |
42 | Linear OOA(1679, 80, F16, 2, 57) (dual of [(80, 2), 81, 58]-NRT-code) | [i] | ✔ | |
43 | Linear OOA(1662, 80, F16, 2, 40) (dual of [(80, 2), 98, 41]-NRT-code) | [i] | ✔ | |
44 | Linear OOA(1681, 81, F16, 2, 58) (dual of [(81, 2), 81, 59]-NRT-code) | [i] | ✔ | |
45 | Linear OOA(1682, 82, F16, 2, 58) (dual of [(82, 2), 82, 59]-NRT-code) | [i] | ✔ | |
46 | Linear OOA(1663, 81, F16, 2, 40) (dual of [(81, 2), 99, 41]-NRT-code) | [i] | ✔ | |
47 | Linear OOA(1664, 82, F16, 2, 40) (dual of [(82, 2), 100, 41]-NRT-code) | [i] | ✔ | |
48 | Linear OOA(1684, 83, F16, 2, 59) (dual of [(83, 2), 82, 60]-NRT-code) | [i] | ✔ | |
49 | Linear OOA(1665, 83, F16, 2, 40) (dual of [(83, 2), 101, 41]-NRT-code) | [i] | ✔ | |
50 | Linear OOA(1686, 84, F16, 2, 60) (dual of [(84, 2), 82, 61]-NRT-code) | [i] | ✔ | |
51 | Linear OOA(1666, 84, F16, 2, 40) (dual of [(84, 2), 102, 41]-NRT-code) | [i] | ✔ | |
52 | Linear OOA(1688, 85, F16, 2, 61) (dual of [(85, 2), 82, 62]-NRT-code) | [i] | ✔ | |
53 | Linear OOA(1690, 86, F16, 2, 62) (dual of [(86, 2), 82, 63]-NRT-code) | [i] | ✔ | |
54 | Linear OOA(1692, 87, F16, 2, 63) (dual of [(87, 2), 82, 64]-NRT-code) | [i] | ✔ | |
55 | Linear OOA(1694, 88, F16, 2, 64) (dual of [(88, 2), 82, 65]-NRT-code) | [i] | ✔ | |
56 | Linear OOA(1699, 90, F16, 2, 66) (dual of [(90, 2), 81, 67]-NRT-code) | [i] | ✔ | |
57 | Linear OOA(16101, 91, F16, 2, 67) (dual of [(91, 2), 81, 68]-NRT-code) | [i] | ✔ | |
58 | Linear OOA(16103, 92, F16, 2, 68) (dual of [(92, 2), 81, 69]-NRT-code) | [i] | ✔ | |
59 | Linear OOA(16105, 93, F16, 2, 69) (dual of [(93, 2), 81, 70]-NRT-code) | [i] | ✔ | |
60 | Linear OOA(16107, 94, F16, 2, 70) (dual of [(94, 2), 81, 71]-NRT-code) | [i] | ✔ | |
61 | Linear OOA(16109, 95, F16, 2, 71) (dual of [(95, 2), 81, 72]-NRT-code) | [i] | ✔ | |
62 | Linear OOA(16111, 96, F16, 2, 72) (dual of [(96, 2), 81, 73]-NRT-code) | [i] | ✔ |