Information on Result #945886
Linear OOA(293, 348, F2, 3, 19) (dual of [(348, 3), 951, 20]-NRT-code), using OOA 3-folding based on linear OA(293, 1044, F2, 19) (dual of [1044, 951, 20]-code), using
- discarding factors / shortening the dual code based on linear OA(293, 1045, F2, 19) (dual of [1045, 952, 20]-code), using
- construction XX applied to C1 = C([1021,14]), C2 = C([0,16]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([1021,16]) [i] based on
- linear OA(281, 1023, F2, 17) (dual of [1023, 942, 18]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−2,−1,…,14}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(281, 1023, F2, 17) (dual of [1023, 942, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 210−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(291, 1023, F2, 19) (dual of [1023, 932, 20]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−2,−1,…,16}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(271, 1023, F2, 15) (dual of [1023, 952, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 210−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code) (see above)
- construction XX applied to C1 = C([1021,14]), C2 = C([0,16]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([1021,16]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(293, 348, F2, 3, 18) (dual of [(348, 3), 951, 19]-NRT-code) | [i] | Strength Reduction for OOAs | |
2 | Linear OOA(293, 348, F2, 4, 19) (dual of [(348, 4), 1299, 20]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
3 | Linear OOA(293, 348, F2, 5, 19) (dual of [(348, 5), 1647, 20]-NRT-code) | [i] | ||
4 | Linear OOA(293, 348, F2, 6, 19) (dual of [(348, 6), 1995, 20]-NRT-code) | [i] | ||
5 | Linear OOA(293, 348, F2, 7, 19) (dual of [(348, 7), 2343, 20]-NRT-code) | [i] | ||
6 | Linear OOA(293, 348, F2, 8, 19) (dual of [(348, 8), 2691, 20]-NRT-code) | [i] | ||
7 | Digital (74, 93, 348)-net over F2 | [i] |