Information on Result #948849
Linear OOA(2224, 189, F2, 3, 48) (dual of [(189, 3), 343, 49]-NRT-code), using OOA 3-folding based on linear OA(2224, 567, F2, 48) (dual of [567, 343, 49]-code), using
- 1 times truncation [i] based on linear OA(2225, 568, F2, 49) (dual of [568, 343, 50]-code), using
- construction XX applied to C1 = C([505,38]), C2 = C([0,42]), C3 = C1 + C2 = C([0,38]), and C∩ = C1 ∩ C2 = C([505,42]) [i] based on
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,38}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(2208, 511, F2, 49) (dual of [511, 303, 50]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,42}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2163, 511, F2, 39) (dual of [511, 348, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- construction XX applied to C1 = C([505,38]), C2 = C([0,42]), C3 = C1 + C2 = C([0,38]), and C∩ = C1 ∩ C2 = C([505,42]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.