Information on Result #953808
Linear OOA(3108, 126, F3, 3, 28) (dual of [(126, 3), 270, 29]-NRT-code), using OOA 3-folding based on linear OA(3108, 378, F3, 28) (dual of [378, 270, 29]-code), using
- construction XX applied to C1 = C([160,185]), C2 = C([158,183]), C3 = C1 + C2 = C([160,183]), and C∩ = C1 ∩ C2 = C([158,185]) [i] based on
- linear OA(3100, 364, F3, 26) (dual of [364, 264, 27]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {160,161,…,185}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(3100, 364, F3, 26) (dual of [364, 264, 27]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {158,159,…,183}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(3106, 364, F3, 28) (dual of [364, 258, 29]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {158,159,…,185}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(394, 364, F3, 24) (dual of [364, 270, 25]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {160,161,…,183}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.