Information on Result #977327
Linear OOA(776, 62, F7, 3, 31) (dual of [(62, 3), 110, 32]-NRT-code), using OOA 3-folding based on linear OA(776, 186, F7, 31) (dual of [186, 110, 32]-code), using
- construction XX applied to C1 = C([0,28]), C2 = C([6,30]), C3 = C1 + C2 = C([6,28]), and C∩ = C1 ∩ C2 = C([0,30]) [i] based on
- linear OA(764, 171, F7, 29) (dual of [171, 107, 30]-code), using the expurgated narrow-sense BCH-code C(I) with length 171 | 73−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(766, 171, F7, 25) (dual of [171, 105, 26]-code), using the BCH-code C(I) with length 171 | 73−1, defining interval I = {6,7,…,30}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(770, 171, F7, 31) (dual of [171, 101, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 171 | 73−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(760, 171, F7, 23) (dual of [171, 111, 24]-code), using the BCH-code C(I) with length 171 | 73−1, defining interval I = {6,7,…,28}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(75, 8, F7, 5) (dual of [8, 3, 6]-code or 8-arc in PG(4,7)), using
- extended Reed–Solomon code RSe(3,7) [i]
- the expurgated narrow-sense BCH-code C(I) with length 8 | 72−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(71, 7, F7, 1) (dual of [7, 6, 2]-code), using
- Reed–Solomon code RS(6,7) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.