Information on Result #988990
Linear OOA(4946, 268, F49, 3, 24) (dual of [(268, 3), 758, 25]-NRT-code), using OOA 3-folding based on linear OA(4946, 804, F49, 24) (dual of [804, 758, 25]-code), using
- construction XX applied to C1 = C([12,34]), C2 = C([11,33]), C3 = C1 + C2 = C([12,33]), and C∩ = C1 ∩ C2 = C([11,34]) [i] based on
- linear OA(4944, 800, F49, 23) (dual of [800, 756, 24]-code), using the BCH-code C(I) with length 800 | 492−1, defining interval I = {12,13,…,34}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(4944, 800, F49, 23) (dual of [800, 756, 24]-code), using the BCH-code C(I) with length 800 | 492−1, defining interval I = {11,12,…,33}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(4946, 800, F49, 24) (dual of [800, 754, 25]-code), using the BCH-code C(I) with length 800 | 492−1, defining interval I = {11,12,…,34}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(4942, 800, F49, 22) (dual of [800, 758, 23]-code), using the BCH-code C(I) with length 800 | 492−1, defining interval I = {12,13,…,33}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(490, 2, F49, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(490, s, F49, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(490, 2, F49, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.