Information on Result #1131966
Linear OOA(2212, 349529, F2, 6, 21) (dual of [(349529, 6), 2096962, 22]-NRT-code), using OOA 6-folding based on linear OA(2212, 2097174, F2, 21) (dual of [2097174, 2096962, 22]-code), using
- construction X applied to Ce(20) ⊂ Ce(18) [i] based on
- linear OA(2211, 2097152, F2, 21) (dual of [2097152, 2096941, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 221−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(2190, 2097152, F2, 19) (dual of [2097152, 2096962, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 221−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(21, 22, F2, 1) (dual of [22, 21, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2212, 349529, F2, 6, 20) (dual of [(349529, 6), 2096962, 21]-NRT-code) | [i] | Strength Reduction for OOAs | |
2 | Linear OOA(2213, 349529, F2, 6, 21) (dual of [(349529, 6), 2096961, 22]-NRT-code) | [i] | OOA Duplication | |
3 | Linear OOA(2214, 349529, F2, 6, 21) (dual of [(349529, 6), 2096960, 22]-NRT-code) | [i] | ||
4 | Linear OOA(2215, 349529, F2, 6, 21) (dual of [(349529, 6), 2096959, 22]-NRT-code) | [i] | ||
5 | Linear OOA(2216, 349529, F2, 6, 21) (dual of [(349529, 6), 2096958, 22]-NRT-code) | [i] |