Information on Result #1146261
Linear OOA(2225, 38, F2, 6, 204) (dual of [(38, 6), 3, 205]-NRT-code), using juxtaposition based on
- linear OOA(215, 3, F2, 6, 15) (dual of [(3, 6), 3, 16]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(6;3,2) [i]
- linear OOA(2207, 35, F2, 6, 188) (dual of [(35, 6), 3, 189]-NRT-code), using
- repeating each code word 7 times [i] based on linear OOA(227, 5, F2, 6, 26) (dual of [(5, 6), 3, 27]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,3P) [i] based on function field F/F2 with g(F) = 1 and N(F) ≥ 5, using
- repeating each code word 7 times [i] based on linear OOA(227, 5, F2, 6, 26) (dual of [(5, 6), 3, 27]-NRT-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2225, 38, F2, 6, 203) (dual of [(38, 6), 3, 204]-NRT-code) | [i] | Strength Reduction for OOAs | |
2 | Linear OOA(2225, 38, F2, 6, 202) (dual of [(38, 6), 3, 203]-NRT-code) | [i] | ||
3 | Linear OOA(2225, 38, F2, 6, 201) (dual of [(38, 6), 3, 202]-NRT-code) | [i] | ||
4 | Linear OOA(2225, 38, F2, 6, 200) (dual of [(38, 6), 3, 201]-NRT-code) | [i] | ||
5 | Linear OOA(2225, 38, F2, 6, 199) (dual of [(38, 6), 3, 200]-NRT-code) | [i] | ||
6 | Linear OOA(2225, 38, F2, 6, 198) (dual of [(38, 6), 3, 199]-NRT-code) | [i] | ||
7 | Linear OOA(2225, 38, F2, 6, 197) (dual of [(38, 6), 3, 198]-NRT-code) | [i] | ||
8 | Linear OOA(2225, 38, F2, 6, 196) (dual of [(38, 6), 3, 197]-NRT-code) | [i] | ||
9 | Linear OOA(2225, 38, F2, 6, 195) (dual of [(38, 6), 3, 196]-NRT-code) | [i] | ||
10 | Linear OOA(2225, 38, F2, 6, 194) (dual of [(38, 6), 3, 195]-NRT-code) | [i] | ||
11 | Linear OOA(2225, 38, F2, 6, 193) (dual of [(38, 6), 3, 194]-NRT-code) | [i] | ||
12 | Linear OOA(2225, 38, F2, 6, 192) (dual of [(38, 6), 3, 193]-NRT-code) | [i] | ||
13 | Linear OOA(2225, 38, F2, 6, 191) (dual of [(38, 6), 3, 192]-NRT-code) | [i] | ||
14 | Linear OOA(2225, 38, F2, 6, 190) (dual of [(38, 6), 3, 191]-NRT-code) | [i] | ||
15 | Linear OOA(2224, 37, F2, 6, 203) | [i] | Truncation for OOAs | |
16 | Linear OOA(2223, 37, F2, 6, 202) | [i] | ||
17 | Linear OOA(2220, 37, F2, 6, 199) (dual of [(37, 6), 2, 200]-NRT-code) | [i] | ||
18 | Linear OOA(2218, 36, F2, 6, 197) | [i] | ||
19 | Linear OOA(2217, 36, F2, 6, 196) | [i] | ||
20 | Linear OOA(2212, 35, F2, 6, 191) | [i] | ||
21 | Linear OOA(2211, 35, F2, 6, 190) | [i] | ||
22 | Linear OOA(2208, 35, F2, 6, 187) (dual of [(35, 6), 2, 188]-NRT-code) | [i] | ||
23 | Linear OOA(2206, 34, F2, 6, 185) | [i] | ||
24 | Linear OOA(2205, 34, F2, 6, 184) | [i] | ||
25 | Linear OOA(2201, 34, F2, 6, 180) (dual of [(34, 6), 3, 181]-NRT-code) | [i] | ||
26 | Linear OOA(2200, 33, F2, 6, 179) | [i] | ||
27 | Linear OOA(2199, 33, F2, 6, 178) | [i] | ||
28 | Linear OOA(2194, 32, F2, 6, 173) | [i] | ||
29 | Linear OOA(2193, 32, F2, 6, 172) | [i] | ||
30 | Linear OOA(2188, 31, F2, 6, 167) | [i] | ||
31 | Linear OOA(2187, 31, F2, 6, 166) | [i] | ||
32 | Linear OOA(2182, 30, F2, 6, 161) | [i] | ||
33 | Linear OOA(2181, 30, F2, 6, 160) | [i] | ||
34 | Linear OOA(2243, 41, F2, 6, 220) (dual of [(41, 6), 3, 221]-NRT-code) | [i] | Juxtaposition for OOAs |