Information on Result #1206166

Digital (206, 222, 1048707)-net over F2, using (u, u+v)-construction based on
  1. digital (30, 38, 132)-net over F2, using
    • net defined by OOA [i] based on linear OOA(238, 132, F2, 8, 8) (dual of [(132, 8), 1018, 9]-NRT-code), using
      • OA 4-folding and stacking [i] based on linear OA(238, 528, F2, 8) (dual of [528, 490, 9]-code), using
        • discarding factors / shortening the dual code based on linear OA(238, 530, F2, 8) (dual of [530, 492, 9]-code), using
          • 1 times truncation [i] based on linear OA(239, 531, F2, 9) (dual of [531, 492, 10]-code), using
            • construction XX applied to C1 = C([509,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
              1. linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
              2. linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
              3. linear OA(237, 511, F2, 9) (dual of [511, 474, 10]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
              4. linear OA(219, 511, F2, 5) (dual of [511, 492, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
              5. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
              6. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
  2. digital (168, 184, 1048575)-net over F2, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

None.