Information on Result #1206322

Digital (229, 248, 932199)-net over F2, using (u, u+v)-construction based on
  1. digital (31, 40, 133)-net over F2, using
    • net defined by OOA [i] based on linear OOA(240, 133, F2, 9, 9) (dual of [(133, 9), 1157, 10]-NRT-code), using
      • appending kth column [i] based on linear OOA(240, 133, F2, 8, 9) (dual of [(133, 8), 1024, 10]-NRT-code), using
        • OOA 4-folding and stacking with additional row [i] based on linear OA(240, 533, F2, 9) (dual of [533, 493, 10]-code), using
          • adding a parity check bit [i] based on linear OA(239, 532, F2, 8) (dual of [532, 493, 9]-code), using
            • construction XX applied to C1 = C([509,4]), C2 = C([1,6]), C3 = C1 + C2 = C([1,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
              1. linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
              2. linear OA(227, 511, F2, 6) (dual of [511, 484, 7]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
              3. linear OA(237, 511, F2, 9) (dual of [511, 474, 10]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
              4. linear OA(218, 511, F2, 4) (dual of [511, 493, 5]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
              5. linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
              6. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
  2. digital (189, 208, 932066)-net over F2, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

None.