Information on Result #1215049

Digital (60, 68, 4194558)-net over F8, using (u, u+v)-construction based on
  1. digital (6, 10, 258)-net over F8, using
    • net defined by OOA [i] based on linear OOA(810, 258, F8, 4, 4) (dual of [(258, 4), 1022, 5]-NRT-code), using
      • appending kth column [i] based on linear OOA(810, 258, F8, 3, 4) (dual of [(258, 3), 764, 5]-NRT-code), using
        • OA 2-folding and stacking [i] based on linear OA(810, 516, F8, 4) (dual of [516, 506, 5]-code), using
          • discarding factors / shortening the dual code based on linear OA(810, 517, F8, 4) (dual of [517, 507, 5]-code), using
            • construction XX applied to C1 = C([510,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([510,2]) [i] based on
              1. linear OA(87, 511, F8, 3) (dual of [511, 504, 4]-code or 511-cap in PG(6,8)), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,1}, and designed minimum distance d ≥ |I|+1 = 4 [i]
              2. linear OA(87, 511, F8, 3) (dual of [511, 504, 4]-code or 511-cap in PG(6,8)), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
              3. linear OA(810, 511, F8, 4) (dual of [511, 501, 5]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 5 [i]
              4. linear OA(84, 511, F8, 2) (dual of [511, 507, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
              5. linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
              6. linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
  2. digital (50, 58, 4194300)-net over F8, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

None.