Information on Result #1224642

Digital (60, 69, 4227164)-net over F32, using (u, u+v)-construction based on
  1. digital (12, 16, 4194301)-net over F32, using
  2. digital (44, 53, 2113582)-net over F32, using
    • (u, u+v)-construction [i] based on
      1. digital (8, 12, 16432)-net over F32, using
        • net defined by OOA [i] based on linear OOA(3212, 16432, F32, 4, 4) (dual of [(16432, 4), 65716, 5]-NRT-code), using
          • OA 2-folding and stacking [i] based on linear OA(3212, 32864, F32, 4) (dual of [32864, 32852, 5]-code), using
            • generalized (u, u+v)-construction [i] based on
              1. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code), using
              2. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              3. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              4. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              5. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              6. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              7. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              8. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              9. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              10. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              11. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              12. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              13. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              14. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              15. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              16. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              17. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              18. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              19. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              20. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              21. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              22. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              23. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              24. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              25. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              26. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              27. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              28. linear OA(320, 1027, F32, 0) (dual of [1027, 1027, 1]-code) (see above)
              29. linear OA(321, 1027, F32, 1) (dual of [1027, 1026, 2]-code), using
              30. linear OA(321, 1027, F32, 1) (dual of [1027, 1026, 2]-code) (see above)
              31. linear OA(323, 1027, F32, 2) (dual of [1027, 1024, 3]-code), using
              32. linear OA(327, 1027, F32, 4) (dual of [1027, 1020, 5]-code), using
                • construction XX applied to C1 = C([1022,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([1022,2]) [i] based on
                  1. linear OA(325, 1023, F32, 3) (dual of [1023, 1018, 4]-code or 1023-cap in PG(4,32)), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,1}, and designed minimum distance d ≥ |I|+1 = 4 [i]
                  2. linear OA(325, 1023, F32, 3) (dual of [1023, 1018, 4]-code or 1023-cap in PG(4,32)), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
                  3. linear OA(327, 1023, F32, 4) (dual of [1023, 1016, 5]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 5 [i]
                  4. linear OA(323, 1023, F32, 2) (dual of [1023, 1020, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
                  5. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
                  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
      2. digital (32, 41, 2097150)-net over F32, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

None.