Information on Result #1297219

Linear OA(2116, 146, F2, 44) (dual of [146, 30, 45]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2106, 135, F2, 44) (dual of [135, 29, 45]-code), using
    • 1 times truncation [i] based on linear OA(2107, 136, F2, 45) (dual of [136, 29, 46]-code), using
      • construction X applied to Ce(46) ⊂ Ce(42) [i] based on
        1. linear OA(2106, 128, F2, 47) (dual of [128, 22, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47 [i]
        2. linear OA(299, 128, F2, 43) (dual of [128, 29, 44]-code), using an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
        3. linear OA(21, 8, F2, 1) (dual of [8, 7, 2]-code), using
  2. linear OA(2106, 136, F2, 34) (dual of [136, 30, 35]-code), using Gilbert–VarÅ¡amov bound and bm = 2106 > Vbs−1(k−1) = 47 028939 624964 578773 016369 965664 [i]
  3. linear OA(29, 10, F2, 9) (dual of [10, 1, 10]-code or 10-arc in PG(8,2)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2117, 147, F2, 45) (dual of [147, 30, 46]-code) [i]Adding a Parity Check Bit