Information on Result #1297270

Linear OA(2151, 283, F2, 40) (dual of [283, 132, 41]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2142, 272, F2, 40) (dual of [272, 130, 41]-code), using
    • 1 times truncation [i] based on linear OA(2143, 273, F2, 41) (dual of [273, 130, 42]-code), using
      • construction XX applied to C1 = C([253,36]), C2 = C([0,38]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([253,38]) [i] based on
        1. linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,36}, and designed minimum distance d ≥ |I|+1 = 40 [i]
        2. linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
        3. linear OA(2141, 255, F2, 41) (dual of [255, 114, 42]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,38}, and designed minimum distance d ≥ |I|+1 = 42 [i]
        4. linear OA(2125, 255, F2, 37) (dual of [255, 130, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
        5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
        6. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code) (see above)
  2. linear OA(2142, 274, F2, 34) (dual of [274, 132, 35]-code), using Gilbert–VarÅ¡amov bound and bm = 2142 > Vbs−1(k−1) = 4 393821 395201 179987 229462 394138 077510 153008 [i]
  3. linear OA(27, 9, F2, 5) (dual of [9, 2, 6]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2152, 284, F2, 41) (dual of [284, 132, 42]-code) [i]Adding a Parity Check Bit