Information on Result #1297374

Linear OA(2200, 568, F2, 42) (dual of [568, 368, 43]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2192, 558, F2, 42) (dual of [558, 366, 43]-code), using
    • 1 times truncation [i] based on linear OA(2193, 559, F2, 43) (dual of [559, 366, 44]-code), using
      • construction XX applied to C1 = C([507,34]), C2 = C([0,38]), C3 = C1 + C2 = C([0,34]), and C∩ = C1 ∩ C2 = C([507,38]) [i] based on
        1. linear OA(2163, 511, F2, 39) (dual of [511, 348, 40]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,34}, and designed minimum distance d ≥ |I|+1 = 40 [i]
        2. linear OA(2163, 511, F2, 39) (dual of [511, 348, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
        3. linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,38}, and designed minimum distance d ≥ |I|+1 = 44 [i]
        4. linear OA(2145, 511, F2, 35) (dual of [511, 366, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
        5. linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
        6. linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)) (see above)
  2. linear OA(2192, 560, F2, 37) (dual of [560, 368, 38]-code), using Gilbert–VarÅ¡amov bound and bm = 2192 > Vbs−1(k−1) = 736 161707 421843 934204 545953 779144 843185 429516 054023 160481 [i]
  3. linear OA(26, 8, F2, 4) (dual of [8, 2, 5]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.