Information on Result #1298154

Linear OA(383, 1594357, F3, 9) (dual of [1594357, 1594274, 10]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(380, 1594352, F3, 9) (dual of [1594352, 1594272, 10]-code), using
    • construction X4 applied to C([0,4]) ⊂ C([0,3]) [i] based on
      1. linear OA(379, 1594324, F3, 9) (dual of [1594324, 1594245, 10]-code), using the expurgated narrow-sense BCH-code C(I) with length 1594324 | 326−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
      2. linear OA(353, 1594324, F3, 7) (dual of [1594324, 1594271, 8]-code), using the expurgated narrow-sense BCH-code C(I) with length 1594324 | 326−1, defining interval I = [0,3], and minimum distance d ≥ |{−3,−2,…,3}|+1 = 8 (BCH-bound) [i]
      3. linear OA(327, 28, F3, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,3)), using
      4. linear OA(31, 28, F3, 1) (dual of [28, 27, 2]-code), using
  2. linear OA(380, 1594354, F3, 7) (dual of [1594354, 1594274, 8]-code), using Gilbert–VarÅ¡amov bound and bm = 380 > Vbs−1(k−1) = 1 459994 126302 785938 500549 403273 431107 [i]
  3. linear OA(31, 3, F3, 1) (dual of [3, 2, 2]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(383, 797178, F3, 2, 9) (dual of [(797178, 2), 1594273, 10]-NRT-code) [i]OOA Folding
2Linear OOA(383, 531452, F3, 3, 9) (dual of [(531452, 3), 1594273, 10]-NRT-code) [i]
3Linear OOA(383, 398589, F3, 4, 9) (dual of [(398589, 4), 1594273, 10]-NRT-code) [i]