Information on Result #1302614
Linear OA(884, 32802, F8, 18) (dual of [32802, 32718, 19]-code), using construction X with Varšamov bound based on
- linear OA(883, 32800, F8, 18) (dual of [32800, 32717, 19]-code), using
- construction X applied to Ce(17) ⊂ Ce(11) [i] based on
- linear OA(876, 32768, F8, 18) (dual of [32768, 32692, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 32767 = 85−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(851, 32768, F8, 12) (dual of [32768, 32717, 13]-code), using an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 32767 = 85−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(87, 32, F8, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(17) ⊂ Ce(11) [i] based on
- linear OA(883, 32801, F8, 17) (dual of [32801, 32718, 18]-code), using Gilbert–Varšamov bound and bm = 883 > Vbs−1(k−1) = 2 840348 910947 848899 792909 175307 121440 304483 185745 164138 405175 242440 120611 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(884, 32802, F8, 2, 18) (dual of [(32802, 2), 65520, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(884, 32802, F8, 3, 18) (dual of [(32802, 3), 98322, 19]-NRT-code) | [i] | ||
3 | Digital (66, 84, 32802)-net over F8 | [i] | ||
4 | Linear OOA(884, 16401, F8, 2, 18) (dual of [(16401, 2), 32718, 19]-NRT-code) | [i] | OOA Folding |