Information on Result #1302841

Linear OA(8129, 262190, F8, 23) (dual of [262190, 262061, 24]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(8128, 262188, F8, 23) (dual of [262188, 262060, 24]-code), using
    • construction X applied to C([0,11]) ⊂ C([0,8]) [i] based on
      1. linear OA(8121, 262145, F8, 23) (dual of [262145, 262024, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 262145 | 812−1, defining interval I = [0,11], and minimum distance d ≥ |{−11,−10,…,11}|+1 = 24 (BCH-bound) [i]
      2. linear OA(885, 262145, F8, 17) (dual of [262145, 262060, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 262145 | 812−1, defining interval I = [0,8], and minimum distance d ≥ |{−8,−7,…,8}|+1 = 18 (BCH-bound) [i]
      3. linear OA(87, 43, F8, 5) (dual of [43, 36, 6]-code), using
  2. linear OA(8128, 262189, F8, 22) (dual of [262189, 262061, 23]-code), using Gilbert–VarÅ¡amov bound and bm = 8128 > Vbs−1(k−1) = 6749 025443 628099 510372 654988 035308 115830 934117 715866 198242 501109 679326 114628 469194 238548 162626 151058 843720 371708 [i]
  3. linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(8129, 262190, F8, 2, 23) (dual of [(262190, 2), 524251, 24]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(8129, 262190, F8, 3, 23) (dual of [(262190, 3), 786441, 24]-NRT-code) [i]
3Digital (106, 129, 262190)-net over F8 [i]
4Linear OOA(8129, 131095, F8, 2, 23) (dual of [(131095, 2), 262061, 24]-NRT-code) [i]OOA Folding