Information on Result #1303495
Linear OA(9129, 59083, F9, 28) (dual of [59083, 58954, 29]-code), using construction X with Varšamov bound based on
- linear OA(9128, 59081, F9, 28) (dual of [59081, 58953, 29]-code), using
- construction X applied to Ce(27) ⊂ Ce(21) [i] based on
- linear OA(9121, 59049, F9, 28) (dual of [59049, 58928, 29]-code), using an extension Ce(27) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(996, 59049, F9, 22) (dual of [59049, 58953, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(27) ⊂ Ce(21) [i] based on
- linear OA(9128, 59082, F9, 27) (dual of [59082, 58954, 28]-code), using Gilbert–Varšamov bound and bm = 9128 > Vbs−1(k−1) = 8 511359 759487 072952 950387 528848 414544 205046 889042 469099 155568 727971 778807 390178 300592 152375 725337 432808 771705 837269 933897 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9129, 59083, F9, 2, 28) (dual of [(59083, 2), 118037, 29]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9129, 59083, F9, 3, 28) (dual of [(59083, 3), 177120, 29]-NRT-code) | [i] | ||
3 | Digital (101, 129, 59083)-net over F9 | [i] |