Information on Result #1303548
Linear OA(9136, 6573, F9, 38) (dual of [6573, 6437, 39]-code), using construction X with Varšamov bound based on
- linear OA(9135, 6571, F9, 38) (dual of [6571, 6436, 39]-code), using
- construction X applied to Ce(37) ⊂ Ce(34) [i] based on
- linear OA(9133, 6561, F9, 38) (dual of [6561, 6428, 39]-code), using an extension Ce(37) of the primitive narrow-sense BCH-code C(I) with length 6560 = 94−1, defining interval I = [1,37], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(9125, 6561, F9, 35) (dual of [6561, 6436, 36]-code), using an extension Ce(34) of the primitive narrow-sense BCH-code C(I) with length 6560 = 94−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(92, 10, F9, 2) (dual of [10, 8, 3]-code or 10-arc in PG(1,9)), using
- extended Reed–Solomon code RSe(8,9) [i]
- Hamming code H(2,9) [i]
- construction X applied to Ce(37) ⊂ Ce(34) [i] based on
- linear OA(9135, 6572, F9, 37) (dual of [6572, 6437, 38]-code), using Gilbert–Varšamov bound and bm = 9135 > Vbs−1(k−1) = 215 785760 243328 688895 412539 419023 084590 316669 241974 614161 682328 431859 813538 631038 595200 326265 783023 917724 706400 872067 353244 379417 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9136, 6573, F9, 2, 38) (dual of [(6573, 2), 13010, 39]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9136, 6573, F9, 3, 38) (dual of [(6573, 3), 19583, 39]-NRT-code) | [i] | ||
3 | Digital (98, 136, 6573)-net over F9 | [i] |