Information on Result #1303951
Linear OA(2231, 587, F2, 48) (dual of [587, 356, 49]-code), using 17 step Varšamov–Edel lengthening with (ri) = (3, 2, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) based on linear OA(2219, 558, F2, 48) (dual of [558, 339, 49]-code), using
- 1 times truncation [i] based on linear OA(2220, 559, F2, 49) (dual of [559, 339, 50]-code), using
- construction XX applied to C1 = C([507,40]), C2 = C([0,44]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([507,44]) [i] based on
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,40}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,44], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2208, 511, F2, 49) (dual of [511, 303, 50]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,44}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2172, 511, F2, 41) (dual of [511, 339, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)) (see above)
- construction XX applied to C1 = C([507,40]), C2 = C([0,44]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([507,44]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.