Information on Result #1303991
Linear OA(2243, 578, F2, 52) (dual of [578, 335, 53]-code), using 23 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) based on linear OA(2222, 534, F2, 52) (dual of [534, 312, 53]-code), using
- 1 times truncation [i] based on linear OA(2223, 535, F2, 53) (dual of [535, 312, 54]-code), using
- construction XX applied to C1 = C([461,0]), C2 = C([465,2]), C3 = C1 + C2 = C([465,0]), and C∩ = C1 ∩ C2 = C([461,2]) [i] based on
- linear OA(2208, 511, F2, 51) (dual of [511, 303, 52]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,0}, and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(2208, 511, F2, 49) (dual of [511, 303, 50]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−46,−45,…,2}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2217, 511, F2, 53) (dual of [511, 294, 54]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,2}, and designed minimum distance d ≥ |I|+1 = 54 [i]
- linear OA(2199, 511, F2, 47) (dual of [511, 312, 48]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−46,−45,…,0}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(25, 14, F2, 3) (dual of [14, 9, 4]-code or 14-cap in PG(4,2)), using
- discarding factors / shortening the dual code based on linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction XX applied to C1 = C([461,0]), C2 = C([465,2]), C3 = C1 + C2 = C([465,0]), and C∩ = C1 ∩ C2 = C([461,2]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.