Information on Result #1315258
Linear OA(3252, 365, F32, 27) (dual of [365, 313, 28]-code), using 19 step Varšamov–Edel lengthening with (ri) = (1, 18 times 0) based on linear OA(3251, 345, F32, 27) (dual of [345, 294, 28]-code), using
- construction XX applied to C1 = C([340,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([340,25]) [i] based on
- linear OA(3249, 341, F32, 26) (dual of [341, 292, 27]-code), using the BCH-code C(I) with length 341 | 322−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(3249, 341, F32, 26) (dual of [341, 292, 27]-code), using the expurgated narrow-sense BCH-code C(I) with length 341 | 322−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(3251, 341, F32, 27) (dual of [341, 290, 28]-code), using the BCH-code C(I) with length 341 | 322−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(3247, 341, F32, 25) (dual of [341, 294, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 341 | 322−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3252, 365, F32, 2, 27) (dual of [(365, 2), 678, 28]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (25, 52, 365)-net over F32 | [i] | ||
3 | Linear OOA(3252, 182, F32, 2, 27) (dual of [(182, 2), 312, 28]-NRT-code) | [i] | OOA Folding |