Information on Result #1324270
Linear OA(4258, 16433, F4, 47) (dual of [16433, 16175, 48]-code), using construction X with Varšamov bound based on
- linear OA(4255, 16428, F4, 47) (dual of [16428, 16173, 48]-code), using
- construction X applied to Ce(46) ⊂ Ce(40) [i] based on
- linear OA(4246, 16384, F4, 47) (dual of [16384, 16138, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(4211, 16384, F4, 41) (dual of [16384, 16173, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(49, 44, F4, 5) (dual of [44, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(49, 51, F4, 5) (dual of [51, 42, 6]-code), using
- a “DaH†code from Brouwer’s database [i]
- discarding factors / shortening the dual code based on linear OA(49, 51, F4, 5) (dual of [51, 42, 6]-code), using
- construction X applied to Ce(46) ⊂ Ce(40) [i] based on
- linear OA(4255, 16430, F4, 45) (dual of [16430, 16175, 46]-code), using Gilbert–Varšamov bound and bm = 4255 > Vbs−1(k−1) = 107 395280 741341 714219 307814 482104 443253 017118 205598 353069 956998 328597 007127 313410 673454 234341 976845 932597 827956 517294 777154 670804 211309 473266 591380 340397 [i]
- linear OA(41, 3, F4, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.