Information on Result #150092
There is no OOA(2116, 41, S2, 3, 87), because the (dual) Plotkin bound for OOAs shows that M ≥ 1 163074 496311 801388 790831 177745 301504 / 11 > 2116
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(2119, 41, S2, 4, 90) | [i] | m-Reduction for OOAs | |
2 | No OOA(2120, 41, S2, 4, 91) | [i] | ||
3 | No OOA(2121, 41, S2, 4, 92) | [i] | ||
4 | No OOA(2122, 41, S2, 4, 93) | [i] | ||
5 | No OOA(2123, 41, S2, 4, 94) | [i] | ||
6 | No OOA(2124, 41, S2, 4, 95) | [i] | ||
7 | No OOA(2125, 41, S2, 4, 96) | [i] | ||
8 | No OOA(2126, 41, S2, 4, 97) | [i] | ||
9 | No OOA(2127, 41, S2, 4, 98) | [i] | ||
10 | No OOA(2128, 41, S2, 4, 99) | [i] | ||
11 | No OOA(2129, 41, S2, 4, 100) | [i] | ||
12 | No OOA(2130, 41, S2, 4, 101) | [i] | ||
13 | No OOA(2131, 41, S2, 4, 102) | [i] | ||
14 | No OOA(2132, 41, S2, 4, 103) | [i] | ||
15 | No OOA(2133, 41, S2, 4, 104) | [i] | ||
16 | No OOA(2134, 41, S2, 4, 105) | [i] | ||
17 | No OOA(2135, 41, S2, 4, 106) | [i] | ||
18 | No OOA(2136, 41, S2, 4, 107) | [i] | ||
19 | No OOA(2137, 41, S2, 4, 108) | [i] | ||
20 | No OOA(2138, 41, S2, 4, 109) | [i] | ||
21 | No OOA(2139, 41, S2, 4, 110) | [i] | ||
22 | No OOA(2140, 41, S2, 4, 111) | [i] | ||
23 | No OOA(2141, 41, S2, 4, 112) | [i] | ||
24 | No OOA(2142, 41, S2, 4, 113) | [i] | ||
25 | No OOA(2143, 41, S2, 4, 114) | [i] | ||
26 | No OOA(2144, 41, S2, 4, 115) | [i] | ||
27 | No OOA(2145, 41, S2, 4, 116) | [i] | ||
28 | No OOA(2146, 41, S2, 4, 117) | [i] | ||
29 | No OOA(2116, 41, S2, 4, 87) | [i] | Depth Reduction | |
30 | No OOA(2116, 41, S2, 5, 87) | [i] | ||
31 | No OOA(2116, 41, S2, 6, 87) | [i] | ||
32 | No OOA(2116, 41, S2, 7, 87) | [i] | ||
33 | No OOA(2116, 41, S2, 8, 87) | [i] | ||
34 | No (29, 116, 41)-net in base 2 | [i] | Extracting Embedded OOA |