Information on Result #1568340

Linear OOA(2218, 2796337, F2, 3, 16) (dual of [(2796337, 3), 8388793, 17]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(234, 136, F2, 3, 8) (dual of [(136, 3), 374, 9]-NRT-code), using
    • embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OOA(234, 136, F2, 2, 8) (dual of [(136, 2), 238, 9]-NRT-code), using
      • OOA 2-folding [i] based on linear OA(234, 272, F2, 8) (dual of [272, 238, 9]-code), using
        • 1 times truncation [i] based on linear OA(235, 273, F2, 9) (dual of [273, 238, 10]-code), using
          • construction XX applied to C1 = C([253,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([253,6]) [i] based on
            1. linear OA(225, 255, F2, 7) (dual of [255, 230, 8]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
            2. linear OA(225, 255, F2, 7) (dual of [255, 230, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
            3. linear OA(233, 255, F2, 9) (dual of [255, 222, 10]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
            4. linear OA(217, 255, F2, 5) (dual of [255, 238, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
            5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
            6. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code) (see above)
  2. linear OOA(2184, 2796201, F2, 3, 16) (dual of [(2796201, 3), 8388419, 17]-NRT-code), using
    • OOA 3-folding [i] based on linear OA(2184, large, F2, 16) (dual of [large, large−184, 17]-code), using
      • the primitive narrow-sense BCH-code C(I) with length 8388607 = 223−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]

Mode: Linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

None.