Information on Result #1616150

Linear OOA(2251, 2097498, F2, 4, 19) (dual of [(2097498, 4), 8389741, 20]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(243, 348, F2, 4, 9) (dual of [(348, 4), 1349, 10]-NRT-code), using
    • embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OOA(243, 348, F2, 3, 9) (dual of [(348, 3), 1001, 10]-NRT-code), using
      • OOA 3-folding [i] based on linear OA(243, 1044, F2, 9) (dual of [1044, 1001, 10]-code), using
        • discarding factors / shortening the dual code based on linear OA(243, 1045, F2, 9) (dual of [1045, 1002, 10]-code), using
          • construction XX applied to C1 = C([1021,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([1021,6]) [i] based on
            1. linear OA(231, 1023, F2, 7) (dual of [1023, 992, 8]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
            2. linear OA(231, 1023, F2, 7) (dual of [1023, 992, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 210−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
            3. linear OA(241, 1023, F2, 9) (dual of [1023, 982, 10]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
            4. linear OA(221, 1023, F2, 5) (dual of [1023, 1002, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 210−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
            5. linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
            6. linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code) (see above)
  2. linear OOA(2208, 2097150, F2, 4, 19) (dual of [(2097150, 4), 8388392, 20]-NRT-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

None.