Information on Result #1671407
Linear OOA(2247, 1677927, F2, 6, 19) (dual of [(1677927, 6), 10067315, 20]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OOA(2247, 1677927, F2, 5, 19) (dual of [(1677927, 5), 8389388, 20]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(239, 207, F2, 5, 9) (dual of [(207, 5), 996, 10]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(239, 207, F2, 2, 9) (dual of [(207, 2), 375, 10]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(239, 265, F2, 2, 9) (dual of [(265, 2), 491, 10]-NRT-code), using
- OOA 2-folding [i] based on linear OA(239, 530, F2, 9) (dual of [530, 491, 10]-code), using
- discarding factors / shortening the dual code based on linear OA(239, 531, F2, 9) (dual of [531, 492, 10]-code), using
- construction XX applied to C1 = C([509,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
- linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(237, 511, F2, 9) (dual of [511, 474, 10]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(219, 511, F2, 5) (dual of [511, 492, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
- construction XX applied to C1 = C([509,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
- discarding factors / shortening the dual code based on linear OA(239, 531, F2, 9) (dual of [531, 492, 10]-code), using
- OOA 2-folding [i] based on linear OA(239, 530, F2, 9) (dual of [530, 491, 10]-code), using
- discarding factors / shortening the dual code based on linear OOA(239, 265, F2, 2, 9) (dual of [(265, 2), 491, 10]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(239, 207, F2, 2, 9) (dual of [(207, 2), 375, 10]-NRT-code), using
- linear OOA(2208, 1677720, F2, 5, 19) (dual of [(1677720, 5), 8388392, 20]-NRT-code), using
- OOA 5-folding [i] based on linear OA(2208, 8388600, F2, 19) (dual of [8388600, 8388392, 20]-code), using
- discarding factors / shortening the dual code based on linear OA(2208, large, F2, 19) (dual of [large, large−208, 20]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 8388607 = 223−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- discarding factors / shortening the dual code based on linear OA(2208, large, F2, 19) (dual of [large, large−208, 20]-code), using
- OOA 5-folding [i] based on linear OA(2208, 8388600, F2, 19) (dual of [8388600, 8388392, 20]-code), using
- linear OOA(239, 207, F2, 5, 9) (dual of [(207, 5), 996, 10]-NRT-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t.
Other Results with Identical Parameters
None.
Depending Results
None.