Information on Result #1750432
Digital (86, 110, 265)-net over F2, using embedding of OOA with Gilbert–Varšamov bound based on linear OOA(2110, 265, F2, 2, 24) (dual of [(265, 2), 420, 25]-NRT-code), using
- OOA 2-folding [i] based on linear OA(2110, 530, F2, 24) (dual of [530, 420, 25]-code), using
- 1 times truncation [i] based on linear OA(2111, 531, F2, 25) (dual of [531, 420, 26]-code), using
- construction XX applied to C1 = C([509,20]), C2 = C([0,22]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([509,22]) [i] based on
- linear OA(2100, 511, F2, 23) (dual of [511, 411, 24]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(2100, 511, F2, 23) (dual of [511, 411, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(2109, 511, F2, 25) (dual of [511, 402, 26]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,22}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
- construction XX applied to C1 = C([509,20]), C2 = C([0,22]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([509,22]) [i] based on
- 1 times truncation [i] based on linear OA(2111, 531, F2, 25) (dual of [531, 420, 26]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.