Information on Result #1774382
Digital (81, 108, 1141)-net over F4, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(4108, 1141, F4, 27) (dual of [1141, 1033, 28]-code), using
- 101 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 0, 0, 0, 1, 8 times 0, 1, 16 times 0, 1, 27 times 0, 1, 40 times 0) [i] based on linear OA(4101, 1033, F4, 27) (dual of [1033, 932, 28]-code), using
- construction XX applied to C1 = C([1022,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([1022,25]) [i] based on
- linear OA(496, 1023, F4, 26) (dual of [1023, 927, 27]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(496, 1023, F4, 26) (dual of [1023, 927, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(4101, 1023, F4, 27) (dual of [1023, 922, 28]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(491, 1023, F4, 25) (dual of [1023, 932, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code) (see above)
- construction XX applied to C1 = C([1022,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([1022,25]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.