Information on Result #1800353
Digital (117, 138, 4783023)-net over F9, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(9138, 4783023, F9, 21) (dual of [4783023, 4782885, 22]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9137, 4783021, F9, 21) (dual of [4783021, 4782884, 22]-code), using
- construction X applied to Ce(20) ⊂ Ce(13) [i] based on
- linear OA(9127, 4782969, F9, 21) (dual of [4782969, 4782842, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(985, 4782969, F9, 14) (dual of [4782969, 4782884, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(910, 52, F9, 6) (dual of [52, 42, 7]-code), using
- a “Gra†code from Grassl’s database [i]
- construction X applied to Ce(20) ⊂ Ce(13) [i] based on
- linear OA(9137, 4783022, F9, 20) (dual of [4783022, 4782885, 21]-code), using Gilbert–Varšamov bound and bm = 9137 > Vbs−1(k−1) = 9 726202 024512 850561 851379 788916 218736 896278 482971 492738 953936 599001 134252 692777 487618 507412 676637 578145 937655 717797 194929 590505 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(9137, 4783021, F9, 21) (dual of [4783021, 4782884, 22]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.