Information on Result #1808911
Digital (39, 70, 1283)-net over F32, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(3270, 1283, F32, 31) (dual of [1283, 1213, 32]-code), using
- 247 step Varšamov–Edel lengthening with (ri) = (4, 0, 1, 6 times 0, 1, 15 times 0, 1, 34 times 0, 1, 71 times 0, 1, 114 times 0) [i] based on linear OA(3261, 1027, F32, 31) (dual of [1027, 966, 32]-code), using
- construction XX applied to C1 = C([1022,28]), C2 = C([0,29]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([1022,29]) [i] based on
- linear OA(3259, 1023, F32, 30) (dual of [1023, 964, 31]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,28}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(3259, 1023, F32, 30) (dual of [1023, 964, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(3257, 1023, F32, 29) (dual of [1023, 966, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,28]), C2 = C([0,29]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([1022,29]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.