Information on Result #1810107
Digital (57, 107, 1220)-net over F32, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(32107, 1220, F32, 50) (dual of [1220, 1113, 51]-code), using
- 182 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 0, 0, 1, 7 times 0, 1, 16 times 0, 1, 29 times 0, 1, 50 times 0, 1, 70 times 0) [i] based on linear OA(3296, 1027, F32, 50) (dual of [1027, 931, 51]-code), using
- construction XX applied to C1 = C([1022,47]), C2 = C([0,48]), C3 = C1 + C2 = C([0,47]), and C∩ = C1 ∩ C2 = C([1022,48]) [i] based on
- linear OA(3294, 1023, F32, 49) (dual of [1023, 929, 50]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,47}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(3294, 1023, F32, 49) (dual of [1023, 929, 50]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,48], and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(3296, 1023, F32, 50) (dual of [1023, 927, 51]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,48}, and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(3292, 1023, F32, 48) (dual of [1023, 931, 49]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,47], and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,47]), C2 = C([0,48]), C3 = C1 + C2 = C([0,47]), and C∩ = C1 ∩ C2 = C([1022,48]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.