Information on Result #1850379
There is no (88, m, 190)-net in base 3 for arbitrarily large m, because m-reduction would yield (88, 943, 190)-net in base 3, but
- extracting embedded OOA [i] would yield OOA(3943, 190, S3, 5, 855), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 280 406085 174168 496844 118936 689941 730473 030539 747305 788906 188155 368226 933607 063744 650239 650788 572238 349070 539439 037426 970256 753567 258979 244096 897516 006625 757358 875087 706657 447676 682299 756717 985963 055281 277463 797748 941523 903729 232548 583218 358300 671178 895676 916343 329008 793814 657907 779036 894814 391847 122726 826051 245910 087419 996602 152882 867453 786470 584135 683556 948603 059429 770932 433595 989264 526260 940586 494232 605139 266027 255310 950933 934494 337329 718281 967791 / 214 > 3943 [i]
Mode: Bound.
Optimality
Show details for fixed m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (88, 189)-sequence in base 3 | [i] | Net from Sequence | |
2 | No (88, 88+k, 190)-net in base 3 for arbitrarily large k | [i] | Logical Equivalence (for Nets with Unbounded m) | |
3 | No (88, m, 190)-net in base 3 with unbounded m | [i] | ||
4 | No digital (88, 88+k, 190)-net over F3 for arbitrarily large k | [i] | ||
5 | No digital (88, m, 190)-net over F3 with unbounded m | [i] |