Information on Result #1851630
There is no (30, m, 136)-net in base 5 for arbitrarily large m, because m-reduction would yield (30, 404, 136)-net in base 5, but
- extracting embedded OOA [i] would yield OOA(5404, 136, S5, 3, 374), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 8 810146 606282 199070 661019 690726 450453 222248 661910 999218 984660 691558 547191 922235 570062 602082 980208 207965 830909 204686 413652 068652 807707 596967 813273 565236 372369 305542 048490 457576 229932 887298 972565 556591 311395 684993 960412 389619 867154 126506 994071 647838 051575 263307 313434 779644 012451 171875 / 3 > 5404 [i]
Mode: Bound.
Optimality
Show details for fixed m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (30, 135)-sequence in base 5 | [i] | Net from Sequence | |
2 | No (30, 30+k, 136)-net in base 5 for arbitrarily large k | [i] | Logical Equivalence (for Nets with Unbounded m) | |
3 | No (30, m, 136)-net in base 5 with unbounded m | [i] | ||
4 | No digital (30, 30+k, 136)-net over F5 for arbitrarily large k | [i] | ||
5 | No digital (30, m, 136)-net over F5 with unbounded m | [i] |