Information on Result #1853127
There is no (95, m, 788)-net in base 9 for arbitrarily large m, because m-reduction would yield (95, 2360, 788)-net in base 9, but
- extracting embedded OOA [i] would yield OOA(92360, 788, S9, 3, 2265), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 123144 899095 237902 267005 171505 059158 953618 866720 096979 984332 312452 359411 586122 783339 926242 297408 606450 507903 022635 672044 311633 244209 196384 678177 041032 408359 220716 094228 779228 865714 153155 829828 070136 831824 743895 364815 970945 215552 757718 316150 663882 966030 204948 722454 590130 338091 019231 112406 715964 389243 485628 881820 804452 913874 516819 053448 659478 832202 191334 026282 541876 688965 582686 516383 729558 489027 902290 968284 763729 087299 981856 777482 937002 016121 902091 777700 371856 996567 683423 547990 466146 702370 298018 263881 676217 236963 605080 364430 452104 052726 053291 524116 397913 104066 023175 888232 757746 379750 800625 947495 667936 558957 246759 408128 111242 829563 787091 664440 492740 547494 427249 992234 693373 907361 892951 645519 490522 977951 171997 701132 123925 022635 877670 834923 924322 242486 078506 283709 290048 090716 951581 069257 215603 315404 056668 091677 997597 571936 805151 395654 774966 031011 362092 032414 821485 255836 146200 262286 994324 613864 685419 241656 636802 460785 906236 274020 944398 818973 422955 395560 243900 339909 183070 280531 750677 234894 687602 120859 485261 662948 231161 292434 020118 081215 507035 037609 194102 649065 623098 361474 698708 392183 583017 134117 539148 604490 137418 349895 078690 421441 735734 039567 510172 002461 532888 892185 283790 203903 200614 428365 045005 221772 687264 233104 077711 106121 363859 070770 607219 324438 090048 841698 569049 472161 576828 743954 608550 576748 748089 858233 774240 318762 964532 353298 754938 485256 290096 555630 964810 362079 499664 295283 199214 827599 976334 284751 015869 867236 066965 284844 278162 950129 217799 227947 433260 027422 938740 024774 426284 832246 922241 427225 388703 335145 868526 225695 085731 412485 164654 289470 562280 183069 779298 973482 512417 076080 060301 482989 065816 129581 688714 841970 721784 981323 651211 937674 156771 336468 002682 476495 804372 479303 922112 704092 607890 767040 545902 031073 005494 248111 676933 320857 845966 971314 254052 957728 415062 079850 576443 400423 984547 045808 282602 531163 792323 580401 149259 634429 752095 855547 323771 421749 804593 630961 030947 992673 957070 279536 766028 462088 137666 889293 777411 398227 448589 942523 992125 943488 235553 407298 172975 477735 051812 142082 785946 866064 134702 837284 816671 144767 879400 055531 311504 045525 690816 995095 425678 536573 757803 324416 317971 406003 380566 096166 348143 418555 139585 760230 888994 485452 514302 838027 315087 754537 098473 263150 062192 905099 773397 203493 920430 657612 874749 599427 618460 325997 / 1133 > 92360 [i]
Mode: Bound.
Optimality
Show details for fixed m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (95, 787)-sequence in base 9 | [i] | Net from Sequence | |
2 | No (95, 95+k, 788)-net in base 9 for arbitrarily large k | [i] | Logical Equivalence (for Nets with Unbounded m) | |
3 | No (95, m, 788)-net in base 9 with unbounded m | [i] | ||
4 | No digital (95, 95+k, 788)-net over F9 for arbitrarily large k | [i] | ||
5 | No digital (95, m, 788)-net over F9 with unbounded m | [i] |