Information on Result #1869850
There is no (20, 20+k, 95)-net in base 5 for arbitrarily large k, because logical equivalence would yield (20, m, 95)-net in base 5 for arbitrarily large m, but
- m-reduction [i] would yield (20, 281, 95)-net in base 5, but
- extracting embedded OOA [i] would yield OOA(5281, 95, S5, 3, 261), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 4 504112 890784 525303 371583 151787 727847 532332 133580 294973 788106 761215 637819 628193 185165 565648 995788 215542 125035 645294 759063 345617 996739 121292 201506 081179 270403 296033 276063 781158 882193 267345 428466 796875 / 131 > 5281 [i]
- extracting embedded OOA [i] would yield OOA(5281, 95, S5, 3, 261), but
Mode: Bound.
Optimality
Show details for fixed k and s, k and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.