Information on Result #1873225
There is no digital (97, m, 106)-net over F2 with m > ∞, because logical equivalence would yield (97, 106)-sequence in base 2, but
- net from sequence [i] would yield (97, m, 107)-net in base 2 for arbitrarily large m, but
- m-reduction [i] would yield (97, 847, 107)-net in base 2, but
- extracting embedded OOA [i] would yield OOA(2847, 107, S2, 8, 750), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 760136 078916 475898 284579 716670 312257 207815 658846 887233 088637 313314 716445 715197 210429 675282 606258 552310 916094 442451 428090 192247 429963 102130 253347 916797 290397 454022 350912 328885 955333 620426 275972 997397 951501 687640 898125 946828 274317 483325 542156 083009 263690 055680 / 751 > 2847 [i]
- extracting embedded OOA [i] would yield OOA(2847, 107, S2, 8, 750), but
- m-reduction [i] would yield (97, 847, 107)-net in base 2, but
Mode: Bound (linear).
Optimality
Show details for fixed t and s.
Other Results with Identical Parameters
None.
Depending Results
None.