Information on Result #2026396
There is no OA(259, 64, S2, 32), because adding a parity check bit would yield OA(260, 65, S2, 33), but
- the (dual) Plotkin bound shows that M ≥ 27 670116 110564 327424 / 17 > 260 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(260, 64, S2, 2, 33) | [i] | m-Reduction for OOAs | |
2 | No OOA(261, 64, S2, 2, 34) | [i] | ||
3 | No OOA(262, 64, S2, 2, 35) | [i] | ||
4 | No OOA(263, 64, S2, 2, 36) | [i] | ||
5 | No OOA(264, 64, S2, 2, 37) | [i] | ||
6 | No OOA(265, 64, S2, 2, 38) | [i] | ||
7 | No OOA(266, 64, S2, 2, 39) | [i] | ||
8 | No OOA(267, 64, S2, 2, 40) | [i] | ||
9 | No OOA(268, 64, S2, 2, 41) | [i] | ||
10 | No OOA(269, 64, S2, 2, 42) | [i] | ||
11 | No OOA(270, 64, S2, 2, 43) | [i] | ||
12 | No OOA(271, 64, S2, 2, 44) | [i] | ||
13 | No OOA(272, 64, S2, 2, 45) | [i] | ||
14 | No OOA(273, 64, S2, 2, 46) | [i] | ||
15 | No OOA(274, 64, S2, 2, 47) | [i] | ||
16 | No OOA(275, 64, S2, 2, 48) | [i] | ||
17 | No OOA(276, 64, S2, 2, 49) | [i] | ||
18 | No OOA(277, 64, S2, 2, 50) | [i] | ||
19 | No OOA(278, 64, S2, 2, 51) | [i] | ||
20 | No OOA(279, 64, S2, 2, 52) | [i] | ||
21 | No OOA(280, 64, S2, 2, 53) | [i] | ||
22 | No OOA(281, 64, S2, 2, 54) | [i] | ||
23 | No OOA(259, 64, S2, 2, 32) | [i] | Depth Reduction | |
24 | No OOA(259, 64, S2, 3, 32) | [i] | ||
25 | No OOA(259, 64, S2, 4, 32) | [i] | ||
26 | No OOA(259, 64, S2, 5, 32) | [i] | ||
27 | No OOA(259, 64, S2, 6, 32) | [i] | ||
28 | No OOA(259, 64, S2, 7, 32) | [i] | ||
29 | No OOA(259, 64, S2, 8, 32) | [i] | ||
30 | No (27, 59, 64)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |