Information on Result #2156197

There is no linear OA(222, 42, F2, 10) (dual of [42, 20, 11]-code), because adding a parity check bit would yield linear OA(223, 43, F2, 11) (dual of [43, 20, 12]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(223, 42, F2, 2, 11) (dual of [(42, 2), 61, 12]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(222, 42, F2, 2, 10) (dual of [(42, 2), 62, 11]-NRT-code) [i]Depth Reduction
3No linear OOA(222, 42, F2, 3, 10) (dual of [(42, 3), 104, 11]-NRT-code) [i]
4No linear OOA(222, 42, F2, 4, 10) (dual of [(42, 4), 146, 11]-NRT-code) [i]
5No linear OOA(222, 42, F2, 5, 10) (dual of [(42, 5), 188, 11]-NRT-code) [i]
6No linear OOA(222, 42, F2, 6, 10) (dual of [(42, 6), 230, 11]-NRT-code) [i]
7No linear OOA(222, 42, F2, 7, 10) (dual of [(42, 7), 272, 11]-NRT-code) [i]
8No linear OOA(222, 42, F2, 8, 10) (dual of [(42, 8), 314, 11]-NRT-code) [i]
9No digital (12, 22, 42)-net over F2 [i]Extracting Embedded Orthogonal Array
10No linear OA(242, 63, F2, 20) (dual of [63, 21, 21]-code) [i]Residual Code