Information on Result #2156214

There is no linear OA(241, 54, F2, 20) (dual of [54, 13, 21]-code), because adding a parity check bit would yield linear OA(242, 55, F2, 21) (dual of [55, 13, 22]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(242, 54, F2, 2, 21) (dual of [(54, 2), 66, 22]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(241, 54, F2, 2, 20) (dual of [(54, 2), 67, 21]-NRT-code) [i]Depth Reduction
3No linear OOA(241, 54, F2, 3, 20) (dual of [(54, 3), 121, 21]-NRT-code) [i]
4No linear OOA(241, 54, F2, 4, 20) (dual of [(54, 4), 175, 21]-NRT-code) [i]
5No linear OOA(241, 54, F2, 5, 20) (dual of [(54, 5), 229, 21]-NRT-code) [i]
6No linear OOA(241, 54, F2, 6, 20) (dual of [(54, 6), 283, 21]-NRT-code) [i]
7No linear OOA(241, 54, F2, 7, 20) (dual of [(54, 7), 337, 21]-NRT-code) [i]
8No linear OOA(241, 54, F2, 8, 20) (dual of [(54, 8), 391, 21]-NRT-code) [i]
9No digital (21, 41, 54)-net over F2 [i]Extracting Embedded Orthogonal Array