Information on Result #2174755
There is no linear OA(2153, 176, F2, 74) (dual of [176, 23, 75]-code), because 2 times code embedding in larger space would yield linear OA(2155, 178, F2, 74) (dual of [178, 23, 75]-code), but
- adding a parity check bit [i] would yield linear OA(2156, 179, F2, 75) (dual of [179, 23, 76]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2154, 176, F2, 2, 75) (dual of [(176, 2), 198, 76]-NRT-code) | [i] | m-Reduction for OOAs | |
2 | No linear OOA(2155, 176, F2, 2, 76) (dual of [(176, 2), 197, 77]-NRT-code) | [i] | ||
3 | No linear OOA(2156, 176, F2, 2, 77) (dual of [(176, 2), 196, 78]-NRT-code) | [i] | ||
4 | No linear OOA(2157, 176, F2, 2, 78) (dual of [(176, 2), 195, 79]-NRT-code) | [i] | ||
5 | No linear OOA(2158, 176, F2, 2, 79) (dual of [(176, 2), 194, 80]-NRT-code) | [i] | ||
6 | No linear OOA(2153, 176, F2, 2, 74) (dual of [(176, 2), 199, 75]-NRT-code) | [i] | Depth Reduction | |
7 | No linear OOA(2153, 176, F2, 3, 74) (dual of [(176, 3), 375, 75]-NRT-code) | [i] | ||
8 | No linear OOA(2153, 176, F2, 4, 74) (dual of [(176, 4), 551, 75]-NRT-code) | [i] | ||
9 | No linear OOA(2153, 176, F2, 5, 74) (dual of [(176, 5), 727, 75]-NRT-code) | [i] | ||
10 | No linear OOA(2153, 176, F2, 6, 74) (dual of [(176, 6), 903, 75]-NRT-code) | [i] | ||
11 | No linear OOA(2153, 176, F2, 7, 74) (dual of [(176, 7), 1079, 75]-NRT-code) | [i] | ||
12 | No linear OOA(2153, 176, F2, 8, 74) (dual of [(176, 8), 1255, 75]-NRT-code) | [i] | ||
13 | No digital (79, 153, 176)-net over F2 | [i] | Extracting Embedded Orthogonal Array |