Information on Result #2222752
Linear OA(2109, 521, F2, 24) (dual of [521, 412, 25]-code), using 1 times truncation based on linear OA(2110, 522, F2, 25) (dual of [522, 412, 26]-code), using
- construction X applied to Ce(24) ⊂ Ce(22) [i] based on
- linear OA(2109, 512, F2, 25) (dual of [512, 403, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(2100, 512, F2, 23) (dual of [512, 412, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2109, 260, F2, 2, 24) (dual of [(260, 2), 411, 25]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(2109, 173, F2, 3, 24) (dual of [(173, 3), 410, 25]-NRT-code) | [i] | ||
3 | Linear OOA(2109, 130, F2, 4, 24) (dual of [(130, 4), 411, 25]-NRT-code) | [i] | ||
4 | Linear OOA(2109, 104, F2, 5, 24) (dual of [(104, 5), 411, 25]-NRT-code) | [i] | ||
5 | Linear OOA(2109, 86, F2, 6, 24) (dual of [(86, 6), 407, 25]-NRT-code) | [i] |