Information on Result #2224810
Linear OA(2136, 8224, F2, 20) (dual of [8224, 8088, 21]-code), using 1 times truncation based on linear OA(2137, 8225, F2, 21) (dual of [8225, 8088, 22]-code), using
- construction X applied to C([0,10]) ⊂ C([0,8]) [i] based on
- linear OA(2131, 8193, F2, 21) (dual of [8193, 8062, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 8193 | 226−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(2105, 8193, F2, 17) (dual of [8193, 8088, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 8193 | 226−1, defining interval I = [0,8], and minimum distance d ≥ |{−8,−7,…,8}|+1 = 18 (BCH-bound) [i]
- linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2138, 8226, F2, 20) (dual of [8226, 8088, 21]-code) | [i] | Code Embedding in Larger Space | |
2 | Linear OA(2139, 8227, F2, 20) (dual of [8227, 8088, 21]-code) | [i] | ||
3 | Linear OOA(2136, 4112, F2, 2, 20) (dual of [(4112, 2), 8088, 21]-NRT-code) | [i] | OOA Folding | |
4 | Linear OOA(2136, 2741, F2, 3, 20) (dual of [(2741, 3), 8087, 21]-NRT-code) | [i] | ||
5 | Linear OOA(2136, 2056, F2, 4, 20) (dual of [(2056, 4), 8088, 21]-NRT-code) | [i] | ||
6 | Linear OOA(2136, 1644, F2, 5, 20) (dual of [(1644, 5), 8084, 21]-NRT-code) | [i] | ||
7 | Linear OOA(2136, 1370, F2, 6, 20) (dual of [(1370, 6), 8084, 21]-NRT-code) | [i] | ||
8 | Linear OOA(2136, 1174, F2, 7, 20) (dual of [(1174, 7), 8082, 21]-NRT-code) | [i] | ||
9 | Linear OOA(2136, 1028, F2, 8, 20) (dual of [(1028, 8), 8088, 21]-NRT-code) | [i] | ||
10 | Linear OOA(2136, 822, F2, 20, 20) (dual of [(822, 20), 16304, 21]-NRT-code) | [i] | OA Folding and Stacking |