Information on Result #3146107
There is no digital (65, 183, 253)-net over F3, because 1 times m-reduction would yield digital (65, 182, 253)-net over F3, but
- extracting embedded orthogonal array [i] would yield linear OA(3182, 253, F3, 117) (dual of [253, 71, 118]-code), but
- residual code [i] would yield OA(365, 135, S3, 39), but
- the linear programming bound shows that M ≥ 2000 162801 965930 900770 104990 490349 087716 486277 017656 327637 447743 356893 611583 086779 033294 458144 297645 498065 069680 360497 586034 717055 695979 331533 067636 894184 274831 825929 542798 240773 136383 979404 789978 613217 511467 494994 164421 452551 885448 979128 358666 230809 782876 228996 614643 061101 386847 566758 402178 385246 751945 / 191 522914 058010 520813 141794 445584 294866 881432 434062 162321 677360 893054 150495 671472 738270 471466 591219 502187 129704 192350 637375 566977 609719 603428 016090 205950 883156 166286 858344 663375 557487 409407 465309 170228 124759 933260 238270 241796 215289 853172 624926 319292 770819 637055 510737 423757 > 365 [i]
- residual code [i] would yield OA(365, 135, S3, 39), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.