Information on Result #3146294
There is no digital (68, 192, 259)-net over F3, because 1 times m-reduction would yield digital (68, 191, 259)-net over F3, but
- extracting embedded orthogonal array [i] would yield linear OA(3191, 259, F3, 123) (dual of [259, 68, 124]-code), but
- residual code [i] would yield OA(368, 135, S3, 41), but
- the linear programming bound shows that M ≥ 4 012864 604332 264726 237245 813410 565913 537110 032972 476971 418053 506641 356122 698876 582999 914606 332022 203278 572145 154882 258603 361198 432722 111949 572177 753464 008379 174152 471906 949796 598337 565413 664824 822296 942408 625040 904817 451650 047319 073006 184830 147991 735484 840189 024895 041134 841819 175176 574928 936653 856763 351431 / 13772 480989 359896 672406 531732 728032 421482 299092 416728 956572 749201 295898 602651 327734 942411 572072 576928 484223 936120 935396 753748 368299 969660 607387 692434 163811 948112 773848 174076 852121 503697 264927 503103 942619 033909 444632 757394 085121 385194 079177 476674 165653 331143 617081 864855 946660 > 368 [i]
- residual code [i] would yield OA(368, 135, S3, 41), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.